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Section 0: Introduction

The purpose of this paper is to prove an absolute version of the Grothendieck Con-
jecture for local p-adic fields (given as Theorem 4.2 in the text):

Theorem : Let K and K ′ be finite extensions of Qp. Let IsomQp
(K, K ′) denote the set

of Qp-algebra isomorphisms of K with K ′. Let OutFilt(ΓK , ΓK′) denote the set of outer
isomorphisms of filtered groups between the absolute Galois groups of K and K ′ equipped
with the filtrations defined by the higher (i.e., with index > 0) ramification groups in the
upper numbering. Then the natural morphism

IsomQp
(K, K ′) → OutFilt(ΓK , ΓK′)

induced by “looking at the morphism induced on absolute Galois groups” is a bijection.

On the one hand, one knows (cf. the Remark in [4] following Theorem 4.2) that the
Grothendieck Conjecture cannot hold in the naive sense (i.e., if one removes the condition
of “compatibility with the filtrations” from the outer isomorphisms considered – see, e.g.,
[8]), so one must put some sort of condition on the outer isomorphisms of Galois groups that
one considers. The condition discussed here is that they preserve the higher ramification
groups. One can debate how natural a condition this is, but at least it gives some sort
of idea of how “good” an outer isomorphism of Galois groups must be in order to arise
“geometrically.”

Historical Remark: I originally set out to prove the naive version of the above Theorem,
only to discover that this was, in fact, false. Thus, I decided to add the “preservation of
filtration” condition because this seemed to be a sort of minimal natural condition that
would allow me to complete the proof that I had envisaged (i.e., the proof discussed in
this paper). Later, after submitting this paper for publication, I was informed, however,
by the referee that in fact, just such a result (as the above Theorem) had been explicitly
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conjectured in discussions following a talk at the Institute for Advanced Study in Princeton
in the Fall of 1993, and, moreover, that this conjecture may have existed in the “folklore”
even earlier than this. At the time I proved this result, however, I was entirely unaware
that this result had, in fact, been conjectured by others.

Theorem 4.2 is proved by first showing that outer isomorphisms of the type considered
necessarily take Hodge-Tate representations to Hodge-Tate representations; then one con-
cludes by using a well-known classification result for abelian Hodge-Tate representations.
Thus, Theorem 4.2 can be regarded as an application of p-adic Hodge theory. In fact,
careful inspection will reveal that the proof of Theorem 4.2 runs, in many respects, in a
fashion parallel to the proof of the main result of [7] (although it is, of course, technically
much simpler than the proof of [7]).

The result of this paper was motivated by a question of A. Schmidt relative to the
results of [7]: Namely, in [7], a relative Grothendieck Conjecture-type result for hyperbolic
curves over local p-adic fields was proven. The question of A. Schmidt was whether or
not such a result could be extended to an absolute Grothendieck Conjecture-type result
for hyperbolic curves over local p-adic fields. At the present time, the author is unable
to prove such an absolute result, but nonetheless, it seems that a result such as Theorem
4.2 (whose proof belongs to the same circle of ideas as the proof of the main result of [7])
might be a useful first step in this direction.

Finally, the author would like to thank A. Tamagawa for useful discussions during
which he presented the proof of Theorem 4.2, as well as A. Schmidt for posing (via email)
the motivational question discussed above.

Section 1: The Cyclotomic Character and Inertia

Let p be a prime number. Let K be a p-adic local field. By this, we shall mean
in this paper that K is a finite extension of Qp. Fix an algebraic closure K of K. Let

ΓK
def= Gal(K/K). The purpose of this paper is to examine to what extent K can be

recovered “group-theoretically” from ΓK . Here (and throughout the paper), when we say
that an object associated to K can be recovered “group-theoretically” from ΓK , we mean
that given another local p-adic field K ′, together with an isomorphism of topological groups
α : ΓK

∼= Γ′
K , the object associated to K is necessarily taken by α to the corresponding

object associated to K ′. That is to say, the use of this term “group-theoretically” is the
same as in [7]. In this first Section, we observe that the cyclotomic character and the inertia
subgroup of ΓK can be recovered group-theoretically from ΓK . It should be remarked that
the results of this Section are well-known (see the Remark at the end of this Section for
bibliographical information).

We begin by reviewing duality. Suppose that M is a Zp-module of finite length
equipped with a continuous ΓK -action. Then one knows (see, e.g., [2], Proposition 3.8)
that one has a natural isomorphism of Galois cohomology modules
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Hi(K, M) ∼= H2−i(K, M∨(1))∨

for i ≥ 0. Here, the “(1)” is a Tate twist, and the superscripted “∨”’s denote the “Pon-
trjagin dual” (i.e., Hom(−,Qp/Zp)). Suppose that M is isomorphic as a Zp-module to
Z/pnZ (for some n ≥ 1). Then it follows from the above isomorphism that M is iso-
morphic as a ΓK -module to Z/pnZ(1) if and only if H2(K, M) ∼= Z/pnZ. This is clearly
a group-theoretic condition on M . Thus, we conclude that the isomorphism class of the
ΓK -module Zp(1) can be recovered group-theoretically from ΓK .

Proposition 1.1: The cyclotomic character χ : ΓK → Zp
× can be recovered entirely

group-theoretically from ΓK .

Now recall from local class field theory (see, e.g., [3]) that we have a natural isomor-
phism

Γab
K

∼= (K×)∧

where the superscripted “ab” denotes the abelianization, and “(K×)∧” denotes the profinite
completion of K× = K −{0}. Let k be the residue field of OK (the ring of integers of K).
Thus, k is the field of q = pf elements. Now it is well-known that (K×)∧ fits into an exact
sequence of topological groups:

0 → UK → (K×)∧ → Ẑ → 0

where UK
def= O×

K . In particular, one thus sees that the prime-to-p part of the torsion
subgroup of (K×)∧ has precisely q − 1 elements, and that the pro-p quotient of (K×)∧ is
the direct sum of a torsion group and a free Zp-module of rank [K : Qp] + 1. (Here we use
the p-adic logarithm on an open subgroup of UK to identify it (modulo torsion) with an
open subgroup of K.) Thus, it follows from the above isomorphism that

Proposition 1.2: The number q of elements in the residue field of OK , and well as the
absolute degree [K : Qp] of K, can be recovered entirely group-theoretically from ΓK .

Now let H ⊆ ΓK be an open subgroup. Let L ⊇ K be the extension field of K
corresponding to H. By applying Proposition 1.2 to L and H, we see that the number qL

of elements in the residue field of OL can be recovered group-theoretically from H ⊆ ΓK .
Note, moreover, that L is unramified over K if and only qL = q[ΓK :H]. Thus, we see that
we have obtained the following

Corollary 1.3: The inertia subgroup IK ⊆ ΓK can be determined group-theoretically
from ΓK .
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Remark: It follows, in particular, from the results of this Section that (i) [K : Qp] and (ii)
the maximal abelian (over Qp) subfield of K are determined group-theoretically by ΓK .
That (i) and (ii) are determined by ΓK is stated in [4] (the Remark following Theorem
4.2), although the proofs of these facts given in the references of [4] are somewhat different
both in substance and in point of view from what we have done in this Section. Moreover,
the content of Propositions 1.1 and 1.2 is also essentially contained in [8], and Corollary
1.3 is explicitly stated in §1 of [9].

Section 2: Higher Ramification Groups

Recall that the p-adic logarithm defines a natural isomorphism of UK (modulo torsion)
onto an open subgroup of K. In particular, it defines an isomorphism of UK ⊗Zp

Qp with
K. Now, for any finite extension L of K (corresponding to some subgroup ΓL ⊆ ΓK), we
have a commutative diagram

UK ⊗Zp
Qp −→ UL ⊗Zp

Qp
⏐⏐�log

⏐⏐�log

K −→ L

(where the horizontal maps are the natural inclusions). Moreover, if we regard UK (respec-
tively, UL) as a subgroup of Γab

K (respectively, Γab
L ) then the morphism UK → UL may be

recovered group-theoretically by means of the “Verlagerung, or transfer, map” (see, e.g.,
[6], Chapter VII, §8). We thus obtain the following result:

Proposition 2.1: The ΓK-module K may be recovered group-theoretically from ΓK .

Note, however, that at this point, the multiplicative structure on K (i.e., its structure as
a field, as opposed to just as an additive group with ΓK -action) has yet to be recovered
group-theoretically.

Now let v ≥ 0 be a real number. Then we shall denote by Γv
K ⊆ ΓK the higher

ramification group associated to the number v in the “upper numbering” (see, e.g., [3],
p. 155). Let us denote by Uv

K ⊆ UK the subgroup 1 + mn
K , where mK ⊆ OK is the

maximal ideal, and n is the unique integer for which n− 1 < v ≤ n. Then it is well-known
(Theorem 1 of [3], p. 155) that the image of Γv

K in Γab
K is equal to Uv

K ⊆ UK . Let eK be the
absolute ramification index of K (i.e., the ramification index of K over Qp). Note that, by
Proposition 1.2, it follows that eK can be recovered group-theoretically from ΓK . Suppose
that we are given (in addition to ΓK) the subgroup Γv

K ⊆ ΓK for some v = r · eK , where
r ≥ 2 is an integer. Then it follows that we know the subgroup Uv

K ⊆ UK . Moreover,
it follows from the theory of the p-adic logarithm (see, e.g., [5], Chapter IV, §1) that the
submodule
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p−r · Uv
K ⊆ UK ⊗Zp

Qp

corresponds to the submodule OK ⊆ K under the isomorphism induced by the p-adic
logarithm.

Now let us denote by K
∧

the p-adic completion of the field K. Thus, K
∧

is the
quotient field of the p-adic completion of the ring of integers OK . Then we see that we
have obtained the following result:

Proposition 2.2: Suppose that we are given the following group-theoretic data: the
topological group ΓK , together with the indexed filtration Γv

K for all v > 0. Then the
ΓK-modules OK , and K

∧
can be recovered group-theoretically from this group-theoretic

data.

Proof: To obtain OK , we simply apply the above discussion to finite extensions L of K,
and use Proposition 2.1. Note that when we pass to an open subgroup ΓL ⊆ ΓK , since the
upper numbering is not compatible with passage to subgroups, one must first convert to
the lower numbering (which is compatible with passage to subgroups), and then convert
back to the upper numbering for ΓL. (See, e.g., [6], Chapter IV, for more details on the
properties of the upper and lower numberings.) It is for this reason that we need all the
Γv

K for v > 0 (note that we already have Γ0
K = IK by Corollary 1.3), rather than just Γv

K

for sufficiently large v.

To obtain K
∧
, we note that K

∧
is just the p-adic completion of OK tensored over Zp

with Qp. ©

Before proceeding, it will be convenient to formalize the hypothesis of the preceding
Proposition. Let G be a topological group. We would like to consider filtrations Gv on G
indexed by a real number v, as follows:

Definition 2.3: We shall call a collection of closed normal subgroups {Gv} of G (where
v ranges over all positive real numbers) a filtration on G if Gv1 ⊆ Gv2 whenever v1 ≥ v2.

There are obvious notions of morphisms and isomorphisms between filtered groups, which
we leave to the refer to formalize. Moreover, because of the normality assumption on the
Gv, there is also a notion of outer isomorphisms (i.e., isomorphisms, considered modulo
inner isomorphisms) between filtered groups. Note that ΓK is equipped with a natural
filtration defined by the Γv

K . Thus, Proposition 2.2 may be reformulated as stating that
the ΓK -module K

∧
may be recovered group-theoretically from the filtered group ΓK .
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Section 3: Hodge-Tate Representations

Next, let us observe the following formal consequence of Proposition 2.2: Let V be
a finite dimensional Qp-vector space equipped with a continuous action by ΓK . For any
integer i, let dV (i) be the Qp-dimension of the space of ΓK -invariants of V (−i)⊗Qp

K
∧
. Let

dV be the sum of the dV (i) as i ranges over all the integers. It is well-known ([1], Chapter
III, §1.2) that dV ≤ dimQp

(V ). Moreover, if dV = dimQp
(V ), then the ΓK -module V is

called Hodge-Tate.

Corollary 3.1: Given a continuous Qp[ΓK ]-vector space of finite Qp-dimension, the
issue of whether or not V is Hodge-Tate (as well as the invariants dV (i)) can be determined
entirely group-theoretically from the filtered group ΓK .

We shall especially be interested in the following type of representation: Let E be
a finite Galois extension of Qp containing K. Let us suppose that the ΓK -module V is
equipped with an E-action, and that V has dimension one over E. Thus, EndE(V ) = E,
and the ΓK action on V is given by some representation ρV : ΓK → E×, which necessarily
factors through Γab

K . Now we make the following

Definition 3.2: We shall call the E[ΓK ]-module V uniformizing if the restriction of ρV

to some open subgroup I of UK (⊆ Γab
K ) is the morphism I → E× induced by restricting

some morphism of fields K ↪→ E to I ⊆ UK ⊆ K.

By class field theory, it follows immediately that uniformizing V exist.

Now one knows ([1], Chapter III, Appendix, §5) that V (as in the paragraph preceding
Definition 3.2) is uniformizing if and only if dV (1) = [E : K]; dV (0) = [E : K] · ([K :
Qp] − 1). Thus, we obtain the following

Corollary 3.3: Given a continuous E[ΓK ]-module V of E-dimension 1, the issue of
whether or not V is uniformizing can be determined entirely group-theoretically from the
filtered group ΓK .

Section 4: The Main Theorem

Let K and K ′ be local p-adic fields. Let us assume that we are given an isomorphism
α : ΓK

∼= ΓK′ of filtered groups. Let V be a uniformizing E[ΓK ]-module, for some Galois
extension E of Qp which contains both K and K ′. Note that α allows us to regard V also
as an E[ΓK′ ]-module. Moreover, by Corollary 3.3, it follows that V is also a uniformizing
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E[ΓK′ ]-module. Thus, it follows that there exist open submodules I ⊆ UK and I ′ ⊆ UK′

such that the isomorphism UK
∼= UK′ induced by α maps I onto I ′, and moreover, the

resulting isomorphism αI : I ∼= I ′ fits into a commutative diagram

I
αI−→ I ′

⏐⏐�
⏐⏐�

E× idE×−→ E×

where the vertical morphisms are induced by field inclusions ι : K ↪→ E and ι′ : K ′ ↪→ E.
Since I (respectively, I ′), regarded as a subset of UK ⊆ K (respectively, UK′ ⊆ K ′),
generates K (respectively, K ′) as a Qp-vector space (by Lemma 4.1 below), it thus follows
that Im(ι) = Im(ι′). In other words, K and K ′ may be realized as the same subfield of
E, i.e., the field inclusions ι and ι′ induce an isomorphism of fields αK : K ∼= K ′ whose
restriction to I ⊆ UK ⊆ K is αI .

Lemma 4.1 : If I ⊆ UK is an open subgroup, then the Qp-vector space generated by
I in K is equal to K.

Proof: Let Z ⊆ K be the Qp-subspace of K generated by I. Note that UK is open in K
(in the p-adic topology). Thus, I is open in K. Moreover, if z ∈ Z, then it follows from
the definition of Z that z + I

def= {z + i | i ∈ I} is also contained in Z. On the other hand,
z + I is open in K. Thus, it follows that Z is open in K. On the other hand, if Z �= K,
then (since the p-adic topology on Qp is not discrete), it would follow that Z is not open
in K. This contradiction shows that Z = K, thus completing the proof of the Lemma. ©

In other words, we have proven the following result:

Theorem 4.2: Let K and K ′ be finite extensions of Qp. Let IsomQp
(K, K ′) denote

the set of Qp-algebra isomorphisms of K with K ′. Let OutFilt(ΓK , ΓK′) denote the set
of outer isomorphisms of filtered groups between the absolute Galois groups of K and K ′

equipped with the filtrations defined by the higher (i.e., with index > 0) ramification groups
in the upper numbering. Then the natural morphism

IsomQp
(K, K ′) → OutFilt(ΓK , ΓK′)

induced by “looking at the morphism induced on absolute Galois groups” is a bijection.

Proof: That this morphism is injective follows by looking at the induced isomorphism
between Γab

K
∼= (K×)∧ and Γab

K′ ∼= ((K ′)×)∧. (Alternatively, the more group-theoretically
oriented reader may prefer to regard the injectivity of this morphism as a consequence of
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the fact that the centralizer of ΓK in ΓQp
is trivial.) Now let us show that the morphism

is surjective. Let α : ΓK
∼= ΓK′ be an isomorphism that is compatible with the filtrations.

Then, in the preceding paragraph, we constructed a field isomorphism αK : K ∼= K ′. To
see that the morphism induced by αK is equal to the original α (up to composition with
an inner isomorphism), it suffices simply to construct the analogues αL : L ∼= L′ of αK for
corresponding finite extensions L and L′ of K and K ′, and then conclude via a standard
general nonsense argument. ©

Remark Concerning the Motivation for Theorem 4.2: Let XK be a closed hyperbolic curve
over K (as in [7]). Let ΠX be the absolute fundamental group of XK . Thus, ΠX fits into
an exact sequence of topological groups

1 → ΔX → ΠX → ΓK → 1

where ΔX ⊆ ΠX is the geometric fundamental group of XK (i.e., the fundamental group
of XK ⊗K K). The main result of [7] implies that XK can be functorially reconstructed
from the morphism ΠX → ΓK . The question of A. Schmidt referred to in Section 0 was
whether or not XK can, in fact, be reconstructed from ΠX alone.

At the present time, the author has not succeeded in doing this, but nevertheless,
one can make the following observations. First of all, by an argument similar to that
of Proposition 1.1 (using Poincaré duality), one can at least reconstruct the cyclotomic
character ΠX → ΓK → Zp

× group-theoretically. Once one has the cyclotomic character,
one can use it to consider H1(ΠX ,Zp(1)), which is surjected onto by H1(ΓK ,Zp(1)). This
allows one to reconstruct the quotient ΠX → ΠX/ΔX group-theoretically. What is still
missing at this point, however, is an argument that would allow one to reconstruct (group-
theoretically) the isomorphism ΠX/ΔX

∼= ΓK induced by the natural morphism ΠX → ΓK .
At the time of writing, the author does not see how to do this. Furthermore, the argument
just discussed for reconstructing the cyclotomic character group-theoretically breaks down
in the case when the curve XK is affine. Thus, at any rate, it seems that in order to prove
an “absolute Grothendieck Conjecture-type result for hyperbolic curves over local fields,”
some fundamentally new ideas are needed. It is hoped that Theorem 4.2 could serve as a
first step in this direction.
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